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Repeated and widespread evolution of
biofluorescence in marine fishes

EmilyM. Carr 1,2 , Rene P. Martin 1,3, Mason A. Thurman 4, Karly E. Cohen5,
Jonathan M. Huie 6, David F. Gruber 7 & John S. Sparks 1,2

Biofluorescence, the absorption of high-energy light and its reemission at
lower energy wavelengths, is widespread across vertebrate and invertebrate
lineages, especially fishes. New observations over the past decade have sig-
nificantly increased our understanding of the diversity and multifunctionality
of fluorescence in fish lineages. In this study, we present a comprehensive
account of all known biofluorescent teleosts and estimate the timing and
frequency of the evolution of biofluorescence across this diverse group. We
show that biofluorescence evolved numerous times in marine teleosts and is
estimated todateback ~112mya inAnguilliformes (true eels). Of the 459 known
biofluorescent teleosts reported in this study, themajority are associated with
coral reefs. We find that reef-associated species evolve biofluorescence at 10x
the rate of non-reef species. Our results suggest that the chromatic and biotic
conditions of coral reefs could have provided an ideal environment to facil-
itate the evolution and diversification of biofluorescence in teleost fishes.

Biofluorescence results from the absorption of higher-energy light and
its reemission at longer, lower-energy wavelengths by living
organisms1. It is a widespread phenomenon across the tree of life and
occurs inmostmajor clades of vertebrates1–9. Biofluorescence is found
in both terrestrial andmarineorganisms, although theseenvironments
have vastly different lighting conditions. Terrestrial ecosystems are
brightly lit by sunlight, which contains awide spectrumofwavelengths
spanning the visible light spectrum. Alternatively, vast portions of the
photic ocean are characterized by a relatively monochromatic, blue-
shifted environment10. As sunlight hits and enters oceanic waters,
longer wavelengths (yellow, orange, red) are rapidly absorbed,
resulting in a limited bandwidth of blue light (470–480nm) by around
150mdepth (frequentlymuch shallower depending onwater clarity)10.
Thus, the ability to absorb shorter wavelength ambient blue light at
depth and reemit it as longer wavelengths through the use of fluor-
escent compounds may be advantageous to marine organisms to
increase visibility and contrast amidst the more monochromatic blue
environment of the ocean1.

Biofluorescence is phylogenetically pervasive, yet it remains
unknown how much of this potential visual signal is biologically rele-
vant and serves a functional role, versus an anatomical byproduct (e.g.,
enamel)4,11. For example, carnivorous pitcher plants (Nepenthaceae
and Sarraceniaceae) fluoresce along the lip of the pitcher, which
attracts insect prey2,12. Sexual dimorphism in green biofluorescence
and ultraviolet (UV) reflectance is thought to aid in the mating rituals
of jumping spiders (Salticidae)3. In marine fishes, where fluorescent
emissions mainly occur in the green to red portions of the visible
spectrum, biofluorescence has been implicated in camouflage, com-
munication, species identification, mating, and prey attraction1,13–15.
The Pacific spiny lumpsucker (Eumicrotremus orbis) exhibits sexually
dichromatic fluorescent emission colors from the body that may
enhancemate identification, whereas fluorescence of the pelvic disc in
both males and females is thought to be utilized for signaling13. Bio-
fluorescence is also notably prevalent in coral reef ecosystems. Scler-
actinian corals exhibit red and green fluorescence, whichmay increase
contrast at depth, provide photoprotection for symbionts, and
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provide visual cues for other reef organisms16–19. Some reef fishes may
utilize biofluorescent corals and marine algae for camouflage. Scor-
pionfishes (Scorpaenidae) and threadfin breams (Nemipteridae) have
been observed residing on or near backgrounds with similar fluor-
escent emission wavelengths to their bodies1. Other reef fishes may be
using biofluorescence for intraspecific signaling, including closely
related species of reef lizardfishes (Synodontidae) that appear nearly
identical under white light, but exhibit significant variation in fluor-
escent patterning1. The potential multifunctional roles of bio-
fluorescence may be linked to the increased rates of diversification of
coral reef fishes20–22.

Thesepotential visual functions of biofluorescenceall require that
fluorescent emissions lie within the spectral sensitivity of relevant
signal-receivers: conspecifics, predators, and/or prey1. Shallow water
reef fishes often have relatively good color vision with two or three
visual pigments, allowing them to navigate the chromatically complex
ecosystem of coral reefs23. Although most reef fishes are sensitive to
shorter wavelengths (blue), some species (e.g., Pomacentridae and
Labridae) exhibit long-wavelength sensitivity as high as 600nm(red)24.
In addition, members of many families of marine fishes have been
reported to possess yellow intraocular lenses that function as long-
pass filters and can facilitate the visualization of longer fluorescent
wavelengths1,25. Behavioral experiments support fluorescent recogni-
tion for sex identification in the fairy wrasse (Cirrhilabrus solorensis)26.
Whereas, direct testing of the visual system in the swell shark
(Cephaloscyllium ventriosum) and chain catshark (Scyliorhinus rotifer)
revealed that fluorescence functions to increase luminosity contrast
with the background environment and between skin patches at
depth14. However, our knowledge of the visual capabilities of bio-
fluorescent fishes is extremely limited23, as is our understanding of
fluorescentmolecules. Green fluorescent proteins (GFP), similar to the
GFP that was first isolated from the hydrozoan Aequorea victoria27,
have only been isolated and characterized in three species of Angu-
illiformes (true eels)28–30. Smaller fluorescent metabolites were found
to be responsible for the green fluorescent emissions in
elasmobranchs14, whereas no red fluorescent molecules have yet been
isolated from fishes despite the prevalence of red fluorescence across
Teleostei.

Given the various proposed functions of biofluorescence and the
visual capabilities of marine fishes, further research into its evolution
and diversification is crucial. Previous investigations of the phyloge-
netic distribution of biofluorescence in teleosts found that the phe-
nomenon is both phylogenetically widespread and phenotypically
variable across the assemblage1,31,32. However, no recent work has
accounted for and incorporated information from the huge increase in
biofluorescent teleost diversity that has been documented within the
past decade.

Herein we investigate the early evolution of biofluorescence in
Teleostei, determine when the phenomenon first evolved in this
group, reconstruct the evolutionary patterns of fluorescent emission
colors in various lineages, and report on the number of times the
phenomenon is known tohave independently evolved across this huge
and remarkably diverse (>30,000 species) vertebrate assemblage. We
also investigate whether the rise and global expansion ofmodern coral
reefs contributed to the incredible diversity of biofluorescence we
observe across modern teleost lineages.

Results
Species-level survey of biofluorescence
We report 48 previously unreported biofluorescent teleost species
based on observations of recently collected specimens (Supplemen-
tary Data 2), exhibiting red (11 spp.), green (32 spp.), and both red and
green (5 spp.) fluorescent emissions. We found 413 currently
known biofluorescent teleost species across peer reviewed
literature1,13,15,26,28,31–44. Combined with our new records, this results in a

total of 459 biofluorescent teleost species spanning 87 families and 34
orders (Supplementary Data 1). Of these, fluorescent emissions are red
only in 261 species, green only for 150 species, and both red and green
for 48 species. We also recorded a total of 469 species where fluor-
escence was not observed (Supplementary Data 1).

Ancestral state reconstructions of biofluorescence
Biofluorescence was present in 267 of the 613 total species in the
trimmed Rabosky et al.45 time-calibrated phylogeny, spanning 79
families (Fig. 1). The best-fit Mk models were both the equal-rates and
the all-rates-differentmodels, hence theyweremodel-averaged during
stochastic character mapping proportional to their Akaike model
weights (67.9% and 32.1%, respectively). The root node of the tree
(192.8 mya) likely exhibited an absence of fluorescence and had a
posterior probability of 33.6% for biofluorescence presence. The old-
est node with fluorescence (66.8% posterior probability) was the
ancestor of all Anguilliformes (~112 mya) (Fig. 1A). The next oldest
nodes where biofluorescence is present are ~104 mya in Syngnathi-
formes and ~87mya in Perciformes45, whichhad posterior probabilities
of 79.3% and 82.5% for biofluorescence presence, respectively
(Fig. 1C, D). From the root, a mean of 178.9 changes occurred between
states. Of these, ~101 were from absence to presence of bio-
fluorescence, and ~78 were from presence to absence. These changes
were almost proportional to the mean total time spent in each state:
55% (12,921.24 my) and 45% (10,571.26 my) for presence and absence,
respectively.

Ancestral state reconstructions of biofluorescent emission color
Of the 267 biofluorescent teleost species in the Rabosky et al. trim-
med phylogeny, fluorescent color was red only in 142 species, green
only in 99 species, and both red and green in 26 species (Supple-
mentary Data 3, Fig. 2). The evolution of red and green fluorescence
was best described by a corHMM model with two rate classes, both
with an all-rates-different model and without dual transitions. Green
first evolved in the ancestor of Anguilliformes (Fig. 2A), with node
likelihoods of 62% for green fluorescence only, 14.6% for red fluor-
escence only, and 22.2% for both red and green fluorescence. The
most recent common ancestor of Synodus (Aulopiformes: Syno-
dontidae; Fig. 2B) exhibited a majority node likelihood for both red
and green fluorescence (54.1%), followed by red only (40.3%) and
green only (5.1%). The most recent common ancestor of Pseu-
docheilinus + Cirrhilabrus (Labriformes: Labridae; Fig. 2C) had node
likelihoods of 83.4% for red fluorescence only and 15.4% for no
fluorescence. However, the most recent common ancestor of Chei-
linus (Labriformes: Labridae; Fig. 2D) had a majority node likelihood
of 92.0% for only green fluorescence only. The node likelihoods were
94.3% for red fluorescence in Antennariidae (Lophiiformes; Fig. 2E)
and 91.2% for green fluorescence in Nemipteridae (Spar-
iformes; Fig. 2F).

In Perciformes45, the ancestor of the entire order (Fig. 2G)
exhibited node likelihoods of 68.9% for red fluorescence only and
28.9% for no fluorescence. However, two clades of Perciformes had
different majority character states. Node likelihoods for Cyclopter-
idae + Liparidae (Perciformes; Fig. 2H) were 56.8% for both red and
green fluorescence, 39.5% for red fluorescence only, and 3.4% for
green fluorescence only, while sculpins (Rhamphocottidae + Agoni-
dae + Psychrolutidae; Fig. 2I) had a 90.9% likelihood for green
fluorescence only and 5.2% for no fluorescence. The ancestor of
Syngnathiformes (Fig. 2J) had node likelihoods of 57.2% for red
fluorescence only, 39.3% for no fluorescence, and 3.4% for green
fluorescence only. However, the likelihoods for the most recent
common ancestor of Hippocampus (Syngnathiformes; Fig. 2K) was
54.8% for both red and green fluorescence and 45.1% for red fluor-
escence only. Two clades of Gobiiformes hadmajority likelihoods for
the evolution of red fluorescence only. The node likelihoods were

Article https://doi.org/10.1038/s41467-025-59843-7

Nature Communications |         (2025) 16:4826 2

www.nature.com/naturecommunications


95.3% for red fluorescence only and 4.6% for no fluorescence in one
clade of gobiid genera (Pleurosicya + Gobiodon + Bryaninops +
Paragobiodon + Eviota; Fig. 2L), and 68.6% for red fluorescence only
and 31.1% for both red and green fluorescence in another clade of
Gobiidae (Gobiodon, Fig. 2M). The ancestor of Pleuronectiformes
(Fig. 2N) had node likelihoods of 65.5% for red fluorescence only,
22.9% for both red and green fluorescence, 8.7% for no fluorescence,
and 2.8% for green fluorescence only.

Diversification analysis of biofluorescence and reef association
The best fitting SSE models were character-independent models,
indicating that factors besides fluorescence and reef-association
influence lineage diversification. The best fitting models were the
MuCID model with seven and eight hidden states. Average net
diversification rates, informed by the ancestral state reconstructions,
were similar (r = 0.029–0.031) with overlapping standard deviations
across all character state combinations (Fig. 3B). However, based on
transition rates, the rate of change between character states, teleost
fishes on reefs evolved fluorescence at a rate 10x faster than species
off reefs (Fig. 3A, bolded arrows; Fig. 4; Supplementary Fig. 3).
However, reef fishes also lost fluorescence at a rate 1.38× faster than
non-reef fishes. Additionally, fishes with fluorescence transitioned to
living off reefs at a rate 2.6× faster than they transitioned on
reefs (Fig. 3A).

Discussion
We examined the evolutionary patterns of biofluorescence across
Teleostei, a massive clade of fishes accounting for ~50% of all extant
vertebrate species45. We show that biofluorescence is phylogenetically
widespread across teleosts, occurring in at least 34 orders, 87 families,
and nearly 460 species45. This significantly expands the known diver-
sity of biofluorescent teleosts, as previous studies have reported only
180–272 fluorescent teleost species, 49–50 families, and 12–16
orders1,31. However, to date, we have only sampled a small percentage
of the total diversity of teleosts, and these numbers almost certainly
severely underestimate the true phylogenetic diversity of bio-
fluorescent taxa. We find that biofluorescence is not restricted to any
specific portion of the topology but is phylogenetically widespread
across Teleostei. However, fluorescence is highly prevalent and
exceptionally phenotypically variable in emission color in certain
diverse assemblages (Figs. 1 and 2). These groups contain repre-
sentatives across broad oceanic depth profiles and habitats, from
intertidal zones (e.g., Perciformes: Liparis florae; Fig. 1C, Supplemen-
tary Data 1) to shallow water reefs (e.g., some Anguilliform families;
Fig. 1A) to the deep sea (Aulopiformes: Chlorophthalmidae; Fig. 2B).

Despite this broad range of environments and habitats, we find
biofluorescence to be most prevalent in species residing on or near
coral reefs, such as Gobiiformes, Blenniiformes, and Syngnathiformes
(Fig. 1D, F, O).Of the 267biofluorescent specieswithin the tree, 73% are

Fig. 1 | TrimmedRabosky etal.45 phylogenyofTeleostei showingancestral state
reconstructions of biofluorescence (absence/presence). Major clades where
biofluorescence is widespread (A–F) and the oldest reconstructed node where
biofluorescence is present (A) are labeled and indicated with an additional outline

circle: A) Anguilliformes, B) Labriformes, C) Perciformes, D) Syngnathiformes, E)
Pleuronectiformes, and F) Blenniiformes. Photographs: NOAA, Vincent Hyland/
WildDerrynane, John Sparks,MasonThurman.Wehave obtainedpermission to use
these images in a commercially published journal.

Article https://doi.org/10.1038/s41467-025-59843-7

Nature Communications |         (2025) 16:4826 3

www.nature.com/naturecommunications


reef associated46 (Fig. 4; Supplementary Data 3). These reef-associated
fluorescent species account for 196 of the total 479 reef-associated
species. Reefs may provide an ideal environment for biofluorescent
emissions, asmany coral species live in clear shallowwater and require
greater exposure to sunlight16. Thus, many reef fishes inhabit areas
with high intensity light that can better facilitate the excitation and
reemission of longer wavelength biofluorescent light. Biofluorescence
is most conspicuous in bright, monochromatic blue water (~5 to
100m), although it is likely overwhelmed by full-spectrum sunlight in
theupper fewmetersof thewater column, limiting its contribution as a
visual signal23,47. Reef-building corals (Scleractinia) also exhibit fluor-
escence, which can increase contrast at depth16. Fluorescence in
cryptic reef fishes may better camouflage them against fluorescent
coral or algal backgrounds, as hypothesized in some scorpaenids
(Scorpaenopsis) and nemipterids (Scolopsis)1. Further, complex struc-
tures like reef ledges and coral heads cast shadows, altering the light
regime under and around these structures48. When fish occupy these
shadowed spaces, their fluorescence may be accentuated due to the
reduction of ambient light “noise”14. Biofluorescence has also been
hypothesized to aid in mate identification through variation in fluor-
escent patterning (e.g., intraspecific identification in reef lizardfish,

Synodus)25,37,45. Further, fluorescent pigments are prevalent in the fins
of reef fishes, such as Eviota (Gobiidae), Enneapterygius (Tripter-
ygiidae), and Corythoichthys (Syngnathidae), structures that these
groups use for intraspecific communication32. Thus, biofluorescence
may be advantageous for reef fishes, given its numerous potential
functions in camouflage, mate identification, and intraspecific
communication1,13,26,32,34. We note, however, that intraspecific com-
munication, including mate recognition, could also be facilitated by
fluorescence in non-reef habitats with lower visibility, such as
turbid water.

Due to its high prevalence on shallow reefs, fluorescence in tele-
osts could be linked to the diversification of coral reef-associated
lineages. Reef-associated teleosts were previously found to exhibit
higher diversification rates compared to non-reef associated groups
due to many factors, including numerous microhabitats in reefs,
increased niche partitioning, and protection from past extinction
events20. Cowman and Bellwood20 investigated this trend in Labridae,
Chaetodontidae, Pomacentridae, and Apogonidae, all of which have
biofluorescent representatives (Figs. 1 and 2; Supplementary Data 1).
Through a diversification analysis, we find that reef-associated teleosts
evolve fluorescence at a much faster rate (10x transition rate) than
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Fig. 2 | Trimmed Rabosky et al.45 phylogeny of Teleostei showing the evolution
of biofluorescent color as a polymorphic trait (red only, green only, both red
and green).Major clades where a certain biofluorescent color is widespread (A–O)
are shown and indicated with an additional outline circle: A) Anguilliformes, B)
Synodus (Aulopiformes: Synodontidae), C) Pseudocheilinus + Cirrhilabrus (Labri-
formes: Labridae), D) Cheilinus (Labriformes: Labridae), E) Antennariidae

(Lophiiformes), F) Nemipteridae (Spariformes),G) Perciformes,H) Cyclopteridae +
Liparidae (Perciformes), I) Rhamphocottidae + Agonidae + Psychrolutidae (Perci-
formes), J) Syngnathiformes, K) Hippocampus (Syngnathiformes), L) Pleurosicya +
Gobiodon + Bryaninops + Paragobiodon + Eviota (Gobiiformes), M) Gobiodon
(Gobiiformes), N) Pleuronectiformes, and O) Blenniiformes.
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non-reef species (Figs. 3A and 4). This indicates that a lineage already
occupying a reef environment is much more likely to evolve fluores-
cence than a lineage that is not reef-associated. However, while fluor-
escence in teleosts is more likely to evolve on reefs, it is not restricted
to reef environments, as fluorescent fish are 2.6x more likely to tran-
sition to living off reefs (Fig. 3A). We also find that reef-associated
lineages have similar transition rates for the loss (q = 0.008) and gain

(q = 0.01) of fluorescence (Fig. 3A). This could imply that fluorescence
is a labile trait on reefs. Further, we find a distinct increase in the
number of fluorescent teleost lineages following the K-Pg boundary
(Fig. 4, dashed line). This trend coincides with the rise of modern coral
dominated reefs and the rapid colonization of reefs by fishes, which
occurred primarily during the early Cenozoic following a significant
loss of coral diversity in the K-Pg extinction (Fig. 4)49–55. These
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Fig. 3 | Diversification analysis results of reef association and biofluorescence
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with dashed arrows showing that teleost fishes on reefs evolved fluorescence at a
rate 10x faster than species off reefs. B Net diversification including standard
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correlations may suggest that the emergence of modern coral reefs
could have facilitated the diversification of fluorescence in reef-
associated teleosts20 (Fig. 4). However, due to the character-
independent models having the best fit, our results imply that other
factors besides reef-association or biofluorescence is likely driving
global diversification across the entire tree. Thus, biofluorescence in
reef fishes could be a byproduct of their increased diversification rate
in these habitats, as coral reefs could have provided the chromatic and
biotic conditions to facilitate the evolution of ecologically relevant
fluorescence in fishes.

Although some biofluorescent teleost lineages evolved in the
early Cenozoic, biofluorescence first evolved much earlier and inde-
pendently in numerous groups.We find that fluorescence first evolved
in Anguilliformes, the true eels, approximately 112 mya (Fig. 1A and
Table 1). Subsequently,fluorescence independently evolved somewhat
later in Syngnathiformes (~104 mya; Fig. 1D) and Perciformes45 (~87
mya; Fig. 1C). Our analyses imply that biofluorescence was indepen-
dently gained ~101 times and lost ~78 times (Fig. 1).However, numerous
species and even entire families have yet to be investigated for bio-
fluorescence, so these numbers are most certainly underestimates.
The numerous independent evolutions of biofluorescence across
Teleostei may point towards similar selective pressures or its potential
multifunctionality in different clades, such as camouflage, commu-
nication, and species identification1,13–15. However, we find thatmultiple
transitions between absence and presence of biofluorescence even
occur within teleost orders (e.g., Labriformes; Fig. 1B), which could
indicate that fluorescence is more evolutionarily labile in some
clades14,28–30.

Our results suggest that biofluorescence is not only phylogen-
etically widespread, but phenotypically diverse in emission color. Both
red and green emissions are present within 48 species spanning 20
families (Supplementary Data 1), specifically within Aulopiformes
(Fig. 2B), Cyclopteridae and Liparidae (Perciformes; Fig. 2H), and some
Syngnathiformes (Hippocampus; Fig. 2K). However, it is important to
note that a node with both red and green fluorescence could mean
either individuals within a species have different emission colors (e.g.,

sexual dimorphism in Labridae26), or a species exhibits simultaneous
dichromatic biofluorescence, where an individual has both red and
green fluorescent emissions. Simultaneous dichromatic bio-
fluorescence is a rarer phenomenon than singular color emission, and
had previously been observed in only sixteen families1,13,35. However,
through our observations, we also find simultaneous dichromatic
biofluorescence in members of Antennariidae (Antennarius) and
Blenniidae (Ecsenius; Fig. 4).

There are also many groups exhibiting only a single fluorescent
emission color. We find that green fluorescence evolved first in
Anguilliformes (Fig. 2A) and is present in three larger clades: a clade of
sculpins (Rhamphocottidae + Agonidae + Psychrolutidae; Fig. 2I),
Nemipteridae (Spariformes; Fig. 2F), and Cheilinus (Labriformes: Lab-
ridae; Fig. 2D). While red fluorescence evolved later, initially in Syng-
nathiformes (Fig. 2J), it is farmorewidespread than green fluorescence
across the teleost phylogeny (Fig. 2C, G, J, L, N, O), notably evolving in
the ancestor of all Perciformes45 (Fig. 2G). This is opposite the trend
reportedbySparks et al.1, who foundgreenbiofluorescence tobemore
common. This was likely a result of reduced sampling effort for red
fluorescence, which often requires additional long-pass filters to
visualize, blocking out brighter green emissions in lineages where the
entire body fluoresces in both green and red (e.g., Synodontidae, reef
lizardfishes; Chlopsidae, false moray eels)1. Interestingly, in Labri-
formes red andgreenfluorescenceevolved independently in two sister
groups of Labridae: the clade comprising Pseudocheilinus + Cirrhilab-
rus (red; Fig. 2C), and Cheilinus (green; Fig. 2D). Whereas green
wavelengths are within the spectral range of more reef-associated
teleosts than red23, many coral reef fishes possess opsins with red-
shifted long wavelength sensitivity (e.g., Pomacentridae)24. Red light
also attenuates rapidly in seawater and may be beneficial for shorter
distance communication than green fluorescence. However, our cur-
rent understanding regarding the spectral sensitivities in fishes is
limited and more taxonomically comprehensive studies are
warranted14,47,56–59. There is also evidence that red emission wave-
lengths may vary both between and within lineages of reef fishes (e.g.,
intraspecific variation within a species), or even within a particular
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Fig. 4 | Trends in the evolution and proliferation of biofluorescence in teleost
fishes and scleractinian coral species diversity over time. Fluorescence evolves
at a faster rate in reef-associated teleosts compared to non-reef species, which is
correlated with the rise of scleractinian coral species diversity in the early Eocene
(~50mya). The dashed linemarks the K-Pg boundary21. The number of scleractinian

coral species was based on data from the fossil record53. The number of reef-
associated and non-reef biofluorescent lineageswas based on the number of nodes
over time, as determined by node ages of the teleost phylogeny andmajority node
likelihood of each character state.
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individual31. This variation in red emissionsmay increase the possibility
of spectral tuning, especially when fluorescence is associated with
conspecific signaling23,32,47.

Biofluorescence is a phylogenetically widespread and phenoty-
pically diverse phenomenon that is found at deep ancestral nodes in
teleost fishes. In this study, we recover ~101 independent evolutions of
biofluorescence across Teleostei, suggesting that it may be an evolu-
tionarily important phenomenon in this massive assemblage that
comprises over 50% of all living vertebrate species and ~95% of all
extant fishes. We estimate that fluorescence first evolved 112 mya in
Anguilliformes. We also find that while green biofluorescence evolved
first (Anguilliformes), red biofluorescence is much more prevalent,
particularly in crown Perciformes. We show that reef-associated spe-
cies evolve fluorescence at 10x the rate of non-reef species and,
therefore, that the rise ofmodern coral reefs in the early Eocene could
have provided the abiotic and biotic conditions necessary to facilitate
the evolution and diversification of biofluorescence inmarine teleosts.

Methods
Species-level survey of biofluorescence
Research, collecting, and export permits were obtained from the
government of the Bahamas, from the Ministry of Fisheries and Min-
istry of Environment, Honiara, Solomon Islands, and from the
Department of Environment, Cayman Islands Government. Additional
permits include Florida Atlantic University’s Institutional Animal Care
andUseCommittee (IACUC, protocolsA16‐34 andA19-36), Florida Fish
and Wildlife Conservation Commission Special Activity Licenses (SAL-
18-1889-SRP and SAL-18-1785A-SRP), and Florida Department of
Environmental Protection permit 09101815. All data supporting the
findings of this study are available within the paper and its supple-
mentary files.

We compiled a comprehensive list of all known fluorescent tel-
eosts via a literature search from peer-reviewed descriptions of
biofluorescence (Supplementary Data 1) in addition to our own
observations of recently collected material (Supplementary Data 2).
Live and frozen specimens used for examination and imaging
(n = 107) were collected in the Solomons Islands in 2012, 2013, and
2019, Greenland in 2019, the Bahamas (Exumas) in 2011 and 2012, the
Cayman Islands in 2016, Southern California, USA (San Diego) in 2015
and 2016, near-shore locations in Washington, USA in 2022, Florida,
USA in 2022, Thailand (Gulf of Thailand and Andaman Sea) in 2024,
and obtained through the aquarium trade (Supplementary Data 2).
Additional fluorescence imaging was conducted at the Mystic
Aquarium, Mystic, CT, USA in 2011 and 2012, and at the Birch
Aquarium, Scripps Institution of Oceanography, La Jolla, CA, USA in
2015 and 2016.

For eachfluorescent species, we recorded the color of fluorescent
emission: either red (590-750nm), green (515–570 nm), or both. For
specimens that we examined directly, fluorescent emission colors
were first judged by eye using a variety of blue excitation lights and
scientific-grade long-pass filters. Specimens collected in Washington

were examined for fluorescence using a NIGHTSEA StereoMicroscope
Fluorescence illuminator with a Royal Blue (RB) head (440–460nm;
Supplementary Fig. 1) and a scientific grade long-pass filter (500 nm).
Specimens in Florida were examined for fluorescence using a SeaLife
Sea Dragon Mini Fluoro light (440–457 nm; Moorestown, NJ, USA;
Supplementary Fig. 1) and a Semrock scientific grade 514 nm long-pass
filter. For all other specimens, emission spectra were elicited via illu-
mination with Royal Blue LED lights collimated to ensure perpendi-
cular incidence on the scientific grade 450–470 nm interference filter
surface (Omega Optical, Inc., Brattleboro, VT, USA) and fluorescence
was confirmed via use of either 514 nm or 561 nm long-pass filters
(Semrock, Rochester, NY). An Ocean Optics USB2000+ portable
spectrophotometer (Dunedin, FL, USA) equipped with a hand-held
fiber optic probe (Ocean Optics ZFQ-12135) was then used to record
fluorescence emission spectra. Emission spectra were elicited via illu-
mination with Royal Blue LED lights collimated to ensure perpendi-
cular incidence on the scientific grade 450-470 nm interference filter
surface (Omega Optical, Inc., Brattleboro, VT, USA; Semrock, Inc.,
Rochester, NY, USA). Emission spectra were recorded by placing the
fiber optic probe near specific anatomical parts of the individual fish
specimen exhibiting fluorescence. This was repeated several times for
each specimen and each anatomical region to ensure the accuracy of
measurements. Peak emissions (lambda-max) were used to confirm
fluorescent emission colors (Supplementary Data 2).

Fluorescent macro photography
For specimen imaging, we placed individual fish in a narrow photo-
graphic tank and gently held them flat against the thin glass front. We
imagedfluorescent emissions in a dark roomusing aNikonD800orD4
DSLR camera outfitted with a Nikon 60 or 105mm macro lens, or a
Sony A7SII camera outfitted with a Sony 90mm macro lens. We cov-
ered the flashes (Nikon SB910) with blue interference bandpass exci-
tation filters (Omega Optical, Inc.) and attached a long-pass (LP)
emission filter (Semrock, Inc.) to the front of the camera lens to record
any emitted fluorescence. To best capture the fluorescent emissions
we tested multiple LP filter pairs. For example, a 514 nm LP filter was
used to capture green fluorescence, whereas a 561 nm LP filter was
used to image longer-wavelength fluorescence (orange and red) and to
block any emitted green fluorescence in species with both fluorescent
colors (i.e., overlapping fluorescent pigments).

Phylogenetic comparative methods
To assess the number of times fluorescence has evolved across Tele-
ostei, we used the time-calibrated Rabosky et al.45 phylogeny. This tree
includes 32 of the 34 orders of known biofluorescent teleosts45 (Sup-
plementary Data 1). To avoid gaps in fluorescent data, we trimmed this
dated phylogeny to only include species that have been investigated
for biofluorescence (Supplementary Data 1). The resulting trimmed
tree contained 613 species, including 85% of the 87 known bio-
fluorescent teleost families and 58% of the 461 currently known bio-
fluorescent species (Supplementary Data 1, 3; Supplementary Fig. 2).

Ancestral state reconstructions of biofluorescence
The evolution of fluorescence (presence/absence) was first examined
in R60 by fitting four extendedMkmodels of evolution: equal-rates, all-
rates-different, and two irreversible trait models (presence to absence
only; absence to presence only) using the fitMk function in phytools
2.061 (Supplementary Code 1). Ancestral state reconstructions were
then performed with stochastic character mapping (nsim = 1000)
under the best-fit Mk model (determined by weighted AIC of the
maximum likelihood estimates) using the simmap function61. The
reconstructions were summarized to determine transition rates and
total time spent in each state using phytools 2.061. We considered an
ancestral node to likely be fluorescent if the posterior probability for
presence was >60%.

Table 1 | Mean node age for clades of interest in the trimmed
Rabosky et al.45 phylogeny of Teleostei

Clade Node age (mya)

Teleostei 193

Anguilliformes 112

Labriformes 80

Perciformes 87

Syngnathiformes 104

Gobiiformes 74

Blenniiformes 59
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Ancestral state reconstructions of biofluorescent emission color
We also reconstructed the evolutionary history of red and green
fluorescence across teleosts. We used the corHMM R package version
2.162 to incorporate hidden rate classes by leveraging hidden Markov
models63 (Supplementary Code 1). These models allow for variation in
transition rates throughout the tree and are commonly used for ana-
lyses of large clades spanning long evolutionary timeframes63. We fit
equal-rate, symmetric, and all-rates-different transition rate models
with and without a hidden rate category. We also fit hybrid hidden
rates models where one rate class was an equal-rates model and the
other was an all-rates different model. We fit all models with and
without dual transitions for a total of 14models. Weighted AICc values
were used todetermine the best-fittingmodel and calculate themodel-
averaged ancestral state likelihood values. The maximum likelihood
estimates of some transition rates sat on a likelihood ridge and led to
the estimation of unrealistically high transition rates. However,
although high transition rates negatively influence stochastic char-
acter mapping, they have little effect on marginal ancestral state
reconstruction64; as a result, the marginal ancestral state reconstruc-
tions were used.

Diversification analysis of biofluorescence and reef association
To investigate whether biofluorescence on coral reefs promotes
increased diversification rates in marine teleosts, we implemented
several Multicharacter Hidden State Speciation and Extinction
(MuHiSSE) models using the hisse R package version 2.1.1165 (Supple-
mentary Code 1). All species with biofluorescence presence/absence
data were also coded as being reef associated or not using the classi-
fications from Larouche et al.66, resulting in a total of 479 reef-
associated species and 134 non-reef species (Supplementary Data 3).
We fit a total of 10 models to the dataset. First, we ran a null MuSSE
model with the same turnover parameter for all state combinations.
Thenwe ran a “true”MuSSEmodel, where the turnover rate parameters
differed between each fluorescence-habitat state combination. We also
ran one character-dependent (MuHiSSE) and seven character-
independent (MuCID) models that incorporated hidden states. Hid-
den states are used to account for unknown factors besides fluores-
cence and reef-association that may affect transition rates and lineage
diversification. The MuHiSSE model included one hidden state, turn-
over rates were allowed to vary across the different states, and transi-
tion rate parameters were allowed to vary across hidden states. We ran
MuCIDmodels for two through eight hidden states, where the turnover
rates were unlinked from the observed states and the transition rate
parameters were constrained to be identical across hidden states. Note,
for all models we used a single extinction fraction parameter, which
was kept constant across all observed and hidden states. To account for
incomplete phylogenetic sampling, we estimated sampling fractions
for each fluorescence-habitat state (non-fluorescent/non-reef, fluor-
escent/non-reef, non-fluorescent/reef-associated, fluorescent/reef-
associated). We first used the proportion of fluorescent fishes in the
dataset reported in this study (Supplementary Data 1) to estimate the
number of fluorescent and nonfluorescent species in the Larouche
et al.66 dataset, which assigns a character state of reef-associated or
non-reef for 3339 marine species. We then estimated sampling frac-
tions based on the proportion of species sampled in the trimmed
Rabosky et al.45 phylogeny with each fluorescence-habitat state out of
the full Larouche et al.66 dataset. We also constrained the root state to
be non-reef associated based on the findings of previous studies that
marine teleostean fishes originated in non-reef habitats21,66.

We identified the best-fitting models using weighted AIC values,
which estimated the transition rates between character states.We then
used the transition rates to conduct marginal ancestral state recon-
structions with the hisse R package. The results of the ancestral state
reconstructionswere summarized by calculating the tip-associated net
diversification rates by model-averaging parameters from all models

that contributed >5% of the AICc weight. Transition ratesmeasure how
frequently a trait is gained or lost (i.e., the rate of change between
character states). A higher transition rate towards the loss of a char-
acter state, for example, indicates that a lineage is more likely to lose
that character over evolutionary time. Diversification rates indicate the
rate that new species evolve. If diversification rates are higher in
lineages with a certain character state, that character state is likely
contributing to the proliferation of species over time. The net diver-
sification rates were visualized using the gghisse package version 0.1.1
(https://github.com/discindo/gghisse). We plotted the number of
biofluorescent lineages through time in R60 by assigning character
states (reef-associated vs non-reef) based on majority node
probabilities.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study
are available within the paper and its supplementary information files.
The full Rabosky et al.45 phylogeny can be found at https://
fishtreeoflife.org/.

Code availability
The authors declare that all code is available in the supplementary
information files. All figures can be generated with Supplementary
Code 1.
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